
Form No. 836 R5
ST 2629 10/91

LA-UR-99-1980

Title: Model Inversion Using Bayesian Inference
And Genetic Algorithms

Author(s): Brian J. Reardon

Submitted to:

http://lib-www.lanl.gov/la-pubs/00326786.pdf

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; therefore, the Laboratory as an institution does not endorse the viewpoint
of a publication or guarantee its technical correctness.

1

Model Inversion Using Bayesian Inference And Genetic Algorithms

Brian J. Reardon, MST-6, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract
The intimate relationship between Bayesian statistics and genetic algorithms (GA) is
elucidated and it is shown that the GA uses Bayes’ rule to select members for the
crossover operator and thus a GA can be formally described as a Bayesian Inference
Engine (BIE). Additionally, the previously used fuzzy logic based multiple objective
selection procedure has been modified to make it simpler to implement and congruent
with a formal execution of Bayes’ rule. The subroutines necessary for this selection
procedure are provided in Appendix A. Finally, the framework of Bayesian inference
has been used to better extract information out of the evolved population of a GA.
Since the output of the GA is the posterior probability density (PPD) of the optimization
problem, the a posteriori covariance matrix, Cm, can be derived and the eigenvalues ov
Cm provide an important measure of performance of the GA. Likewise, the PPD itself
efficiently suppresses much of the noise generated in the population due to the GA’s
inherently stochastic nature. The code for the BIE is provided in Appendix B.

2

1.0 Introduction

1.1 Inverse and Ill Posed Problems in Materials Science and Engineering

There is an ever increasing need in materials science and engineering to fit the

parameters of models, which are to be used in a predictive capacity, using

underdetermined experimental data sets. Model inversion of this type falls under the

general category of inverse and ill – posed problems and can often be cast into the

framework of Bayesian statistics (Tarantola, 1987). Such problems include determining

powder densification models from limited density data, chemical potential determination

from limited phase diagram data containing a high degree of uncertainty, and

mechanical threshold strength (MTS) determination from mechanical tests also with a

high degree of uncertainty. In all of these examples, model parameters must be

optimized using limited and uncertain data sets that leave the inversion

underdetermined. Likewise, if the models are to be used in a predictive capacity, there

is a need to be able to quantify the expected deviation of the model from reality.

This report shows how a fuzzy logic based multi-objective genetic algorithm (GA)

(Reardon 1997a-b, 1998a-e) can be used as a Bayesian Inference Engine (BIE) to

evolve a posterior probability density (PPD) of the model parameter vector space:

Mi = {m1, m2, m3,…, mN}T Eq. 1

where M I is a particular model to be tested, mJ is one of the N parameters used in the

model and T signifies the transpose of the vector. The GA evolves a set or population

of MI’s which effectively defines the PPD. Once the PPD has been sufficiently

determined by the GA, parameter vectors are selected and used in the physics of the

forward problem, for future experimental conditions, to evaluate the predictive capacity

of the model.

As a test of the GA’s ability as a BIE and for the sake simplicity, Schaffer’s F2

problem will be addressed in this report. Schaffer’s F2 problem is a classical

3

multiobjective optimization problem where the objective is to identify the range of x

which sufficiently minimizes both F11(x)=x2 and F22(x)=(x-2)2. In this problem the

parameter vector consists of

Mi = {x1, x2 }
T Eq. 2

where –6.0≤x1≤6.0 is used to evaluate F11(x) and F22(x) and 0.0≤x2≤1.0 is a dummy

variable not used in any function but rather assists in evaluation of the performance of

the GA. The main evaluation carried out by x2 is for evidence of genetic drift.

1.2 Bayesian Statistics in Model Inversion
Consider a model parameter vector such as the one defined in Eq. 2 and also

consider a data vector defined as:

D={d1, d2, d3,…,dND}={0±4, 0±4}T Eq. 3

where ND is the total number of experimentally derived data points. In this example

there are two data points whose value is 0±4. The goal of Bayesian analysis is to come

up with a way of accepting or rejecting a particular model (M) or hypothesis given an

experimental data set (D) and prior knowledge about the problem. Thus, in Bayesian

statistics, the model or hypothesis is assigned a probability of acceptance and the total

probability distribution function (PDF) of a series of models being tested makes up what

is commonly called the posterior probability density (PPD). This goal is achievable

through the central tenant of Bayesian statistics: Bayes’ Rule:

σ M | D() =
P M,D()

P D() Eq. 4

which is essentially the definition of conditional probability. This rule was first proposed

by Rev. Thomas Bayes and published posthumously in 1763 but has been ignored up

4

until the last 20 years due to the computational difficulties in evaluating the probability

integrals (Bayes, 1763). This theorem says that the conditional probability of a model

being correct given a set of data is a ratio of the pdf of M and D to the pdf of D alone.

The numerator can be expressed as:

P M,D() = P D | M()P M() Eq. 5

where the term P(D | M) is not a pdf but a likelihood function. Thus, while the individual

components of P(D | M) are probabilities, the function itself does not integrate to 1.0.

The denominator is often expressed as:

P D() = P D,M()dM∫ . Eq. 6

Therefore, the PPD is redefined as:

σ M | D() =
P D | M()P M()

P D,M()dM∫
. Eq. 7

Bayes’ rule as written above differs considerably from classical frequentist statistics

because of the dependence of the PPD on the prior PDF, P(M). P(M) often contains

subjective information about the problem that the experimentalist has a priori. Another

major departure from frequentist statistics is the way the PPD is updated as new

experimental data becomes available. The frequentist view point is that P(D) should be

considered an unchanging distribution and alos that it is inappropriate to try to assign a

probability of correctness to a hypothesis.

Consequently, Bayes’ Rule provides the scientist with a tool that classical

statistics is not capable or providing, namely, a mathematical formalization of the

scientific method. When a phenomenon is observed, a hypothesis explaining the event

is created often with the observer’s own bias and experience in mind. This hypothesis

5

is then tested against new experimental data and if the data supports the hypothesis

then the belief in or probability of acceptance of the hypothesis increases. An excellent

introduction to the Bayesian approach to hypothesis testing can be found in Chapter 4

of Antelman (1997).

The main difficulty in using Bayes’ rule, lays in the evaluation of the denominator:

P D() P D,M()∫ dM , Eq. 8

where the integral is formally carried over the entire N-dimensional model parameter

space. The accurate and fast approximation of the integration of these N-dimensional,

discontinuous pdf’s is the topic of many papers. Duijndam (1988a, 1988b) discussed

the used of Bayes’ Rule in model inversion and accomplished the above integration by

assuming the PPD had a Gaussian shape then optimized the Gaussian parameters

using least squares. Unfortunately, most PPD’s are not Gaussian in nature and thus

other techniques were needed. These techniques include Monte Carlo integration,

Gibb’s Sampling, and genetic algorithms (Sen and Stoffa ,1992, 1996; Sen et al., 1993;

Mallick, 1995; Gerstoft, 1998).

The PPD is itself a difficult function to visualize due to its multidimensionality and

its change with every new experimental data point. However, once the PPD is derived,

regardless of the method, a number of important parameters describing it can be easily

calculated.

The mean model can be calculated using the following formula which is a

standard definition in most statistics books:

M = Mσ M | D()dM∫ Eq. 9

which for computational purposes is often approximated by summing over a binned

PPD:

6

M = Mσ M | D()∑ Eq. 10

Likewise, the a posteriori model covariance matrix is given by:

CM = M − M() M − M()T
σ M | D()dM∫ . Eq. 11

The covariance matrix, which is often expressed for computational purposes as:

CM = MMTσ M | D() − M M
T∑ , Eq. 12

provides a number of useful parameters. The standard deviation associated with the

mean model is obtained through the square roots of the diagonal elements of CM.

Normalization of CM through:

Cij =
Cij

Cii Cjj

 Eq. 13

produces the correlation matrix. A correlation coefficient of zero indicates no correlation

between two variables. A positive value indicates a positive correlation and likewise a

negative value indicates a negative correlation.

With CM determined, a principle component analysis (PCA) will provide valuable

insight on how well the GA is converging and what model parameters are most

significant or sensitive. In PCA the data of the CM is transformed into a new set of axes

of the same number which are orthogonal to each other and are ordered based on the

variance associated with that axis. The principle components of CM can be obtain by

computing its set of eigenvalues (Λ) and corresponding orthogonal eigenvectors (U)

such that:

CM=UΛUT Eq. 14

7

is satisfied. In a d-dimensional variable space there are d eigenvalues or principle

components. However, many principle components may have small variances and thus

the intrinsic dimensionality of CM is k where k<d.

In the context of a PPD evolved by a GA, PCA is a powerful tool that assists in

overcoming many deficiencies in GA’s. First, as the GA evolves the population, the

eigenvalues of CM asymptotically approach specific values. When the rate of

convergence reaches an acceptable minimum the GA can be stopped. Second, the

largest eigenvalues and their corresponding eigenvectors indicate the most significant

variables or groups of variables in the model given the available data. Thus PCA

provides a sensitivity analysis of the variables in the model. Traditionally, the ability to

conduct a sensitivity analysis with a GA has been hampered by the inherently stochastic

nature of the GA optimization methodology. It will be shown in this paper that the

formulation of the PPD and the extraction of the eigenvalues from CM effectively filter

out the stochastic noise of the GA and thus allows for an accurate determination of

multi-parameter sensitivity.

Once a PPD has been determined to be reliable based on the stabilization of

<M> and the quantities obtained from CM, an optimum model can be selected from <M>

assuming the correlations are properly accounted for during the selection.

1.3 Genetic Algorithms in Model Inversion and Parameter optimization

A detailed account of how a GA operates has been provided elsewhere (Reardon

1998a, b, d). In short, a GA randomly generates a set or population of parameter

vectors M i’s where i = 1 è N and N is the population size. This initial selection, which

occurs within parameter ranges set by the user, constitutes the a priori information used

in Bayes’ Theorem. From this set, parameter vectors that satisfactory solve the

optimization problem are selected. The selected members are allowed to exchange

genetic material and thus produce offspring that may undergo a small degree of

mutation before being placed in the next generation. Once the next generation is filled

the GA starts over with selection, crossover and mutation.

8

The strength and novelty of the GA presented in the references (Reardon 1998a,

b, d) lays in the way selection of members is conducted when dealing with multiple,

conflicting, poorly defined objectives. The actual selection procedure has been modified

slightly from that discussed in the references and thus for completeness the algorithm

and codes will be presented here in detail.

The new selection procedure continues to use a fuzzy logic normalization

scheme as well as continuously updated phenotypic niching but with a few notable

changes. These changes allow for seamless connection between the GA selection

operator and Bayes’ Theorem.

First each parameter vector is used in the evaluation of each objective function

fj(Mi) where j = 1èND (ND: number of objectives or experimental data points). The

outcome of the objective function call is then compared to the experimental data using

the fuzzy rule set of Figure 1 to obtain a scaled fuzzy fitness value fj
’(fj(Mi)). In Figure 1,

Dj is the experimentally observed data point and Ej is the uncertainty associated with Dj.

fj-max is the maximum value for objective j in the entire population and fj-min is the

minimum. The fuzzy fitness f j
’(fj(Mi)) is obtained by finding where f j(Mi) lays on the x axis

of Figure 1 and assigning its corresponding y-axis value. The total fuzzy fitness of MI

then is defined as:

FT Mi() =
1

ND

fj
' fj Mi()()

j =1

ND

∑ Eq. 15

where D is the number of objectives. This relation provides the fitness of a model

vector as a number between 0 and 1 where 1 is the most fit.

The code that accomplishes this calculation is provided in Appendixes A.1, A.2

and A.3.

Once the scaled fitness of all the parameter vectors have been determined,

selection can proceed. In the updated selection procedure a vector is randomly picked

from the population and the accepted or rejected according to the likelihood provided by

9

Eq. 15. Thus if FT(Mi) = 1.0 then the randomly picked member is accepted 100% of the

time but if FT(Mi) = 0.25 then the randomly picked member would be accepted only 25%

of the time. Once two members have been accepted using this procedure they are

compared. If one member has a better fitness than the other then the better fit is

selected for crossover with another member that has been selected in the same way. If

both members have the same fitness then selection goes to the member who is

deemed least crowded according to a continuously updated phenotypic niche counting

procedure describe in previous references (Reardon 1998a, b, d).

As eluded to previously, Eq. 15 and the niching operation taken together are a

combination of the likelihood function and the a priori pdf used in the numerator of

Bayes’ Theorem. The sum over all models evaluated according to Eq. 15 becomes the

denominator. Thus, the GA becomes an effective way of evolving and evaluating the

PPD.

A more simplistic example of the connection between a GA and Bayes’ theorem

can be seen in the traditional roulette wheel selection method used in single objective

GA’s (Goldberg 1989) where the probability of selection is defined as:

σ Mi() =
f Mi()

f Mj()
j= 1

N

∑
Eq. 16

where f(Mi) is the fitness of member MI and the summation in the denominator is over

the entire population. If the summation were over all models ever evaluated then the

Eq. 16 would define the PPD. The a priori pdf is built into f(M i) since MI can only occupy

a parameter volume specified by the user before the GA is initiated.

The net conclusion of this analysis is that the GA acts as a BIE in that it uses

Bayes’ Theorem to select members in the population for crossover and thus the output

of the GA is the PPD. The generation of a PPD now allows for many of the statistical

tools available in Bayesian statistics to be used in the analysis of the output of the GA.

Namely, from the PPD we can derive <M> and CM. The beauty of this approach is that

10

the PPD can be generated at virtually no extra cost. Following the method outlined by

Sen and Stoffa (1992). A 2-D array of M X B is reserved where M is the number of

parameters and B is the number of values each variable can take (i.e. the number of

bins). For each model at each generation an unnormalized PPD, σ(M), is computed

and stored in the proper position in the bin array for each model parameter comprising

each model. At the end of the GA run the model parameter PPD values are normalized.

Also in a vector of length M, each component of M σ(M) is stored and summed with the

correspond values from the other models. This vector provides <M>. CM is determined

by summing up MMT σ(M) in a square array of MM for each model and at the end of the

run subtracting <M><M>T. The FORTRAN 90 code used to evaluate these quantities is

listed in Appendix B.

Once the PPD, <M>, and CM have been sufficiently determined, the GA can be

stopped and optimal model parameter vectors can be selected and used in the physics

of the forward problem for conditions that have not been experimentally tested.

2.0 Schaffer’s F2 Problem
Schaffer’s F2 problem, described earlier, is the classic multiple objective

optimization problem where a population must evolved towards the Pareto optimal

frontier. It is also a very tractable problem to visualize and thus serves as an ideal set

of test functions for the correctness of an optimization theory and corresponding

algorithms. For these reasons the F2 problem is explored in this work.

The optimization carried out here will involve two variables. X1 will be used in the

functions to be optimized and X2 is a dummy variable whose evolution will be tracked to

quantify the performance of the GA. Additionally, the mutation rate will be varied to

determine its effects on the convergence of the solution and to test the ability of the

Bayesian framework to filter out the real marginal PPD signals from the stochastic noise

inherit in GA optimization.

The first step in this analysis is to determine in if the newly redefined fuzzy fitness

function adequately evolves the population towards the optimal frontier. Figure 2

compares the distribution of X1 as a function of generation obtained using the previous

11

selection method of Reardon (1997a) and the newly revised selection method. Both

methods do an adequate job of quickly optimizing the population towards the Pareto

frontier and maintaining the distribution indefinitely. The optimization of Figure 2b has a

larger population size than 2a which helps to explain the slower convergence. Thus,

the new objective function performs as desired and is much easier to implement into the

GA.

Figures 3a-h show the scatter plots for both X1 and X2 as a function of generation

for the four different mutation rates using the new fuzzy fitness function. The most

notable artifact of figures 3a-h is that X1 tends to converge whereas X2 does not. This

would be expected since X1 is used in the functions and X2 is not. At low mutation

rates, diversity in the population is maintained almost exclusively by niching. Thus the

distribution of the dummy variable X2 as well as X1 helps to assure that the selection

procedure is operating in a desirable fashion. The highest mutation rate pm=1/10 is the

easiest to visually detect. Figure 3a shows significant scatter due to the high value for

pm compared to 3c, e, and g. Likewise, figure 3b seems to be much more evenly

spread out compared to 3d, f, and h. There appears not to be a significant difference

among the pm’s of 1/100, 1/1000, and 1/10000. However, one particularly disconcerting

observation is the fact that if this were not such a simple problem and if one did not fully

appreciate the impact of different mutation rates, then one may look at figure 3a and

come up with an acceptable distribution for X1 that was significantly incorrect. Even with

a low pm this same conclusion could be drawn from a visual inspection of the scatter

plots or corresponding stack histograms (Figure 3i). Consequently, a more rigorous

data analysis technique is needed.

The data analysis framework of Bayesian statistics which provides the marginal

PPD’s for each variable will be discussed here. Figure 4a-x show the PPD’s for X1 and

X2 for the 4 different pm‘s at generations 0, 10 and 100. The highest pm (1/10) PPD’s are

displayed in Figures a-f. From the very beginning the PPD of X1 seems to have some

structure compared to the random nature of the X2 PPD. By generation 10 the Pareto

frontier becomes quite clear but there is still a shoulder between for 2≤X1≤5. By

12

generation 100 the frontier between 0 and 2 is clear but the GA still seems to identify a

finite optimal probability between –6.0 and –4.0 and also between 2.0 and 5.0.

However, this probability is considerably lower than what one would have gathered from

figure 3a or its corresponding stack histogram. X2 remains pretty much random

throughout the optimization as would be expected.

At the lower pm of 1/100 the PPD’s are displayed in figures 4g-l. The PPD for X1

is much crisper at generation 10 than for the high pm study. Likewise, at generation 100

the PPD is clearly defined. X2 remains random although there is a wider distribution in

the peak heights as compared to the high pm study.

As the pm continues to decrease to 1/1000 as shown in figures 4m-r, X2 again

continues to remain random with a moderate increase in peak height distribution but the

X1 PPD is even more clearly defined

For a pm of 1/10000 the PPD continues to be more crisply defined for X1 and

random for X2. In fact it is difficult to argue any real difference between the effects of a

pm of 1/100, 1/1000, and 1/10000. With a pm of 1/10000, hardly any genetic

diversification is occurring within the population and thus one would expect a traditional

GA population to experience genetic drift towards a single point within the optimal

range. The reason this is not observed here is due to the niching factor present in the

selection criteria.

With the PPD in hand, the mean marginal model <M> can be determined.

Figures 5a-b show the mean values for X1 and X2 for the different mutation rates. In

general, all < X1>’s approach a value of 1.0 and all <X2>’s approach a value of 0.5

which is consistent with expected behavior. The slight differences in the <M>’s are

consistent with the effects of mutation observed in the scatter plots of figures 3a-i and

the PPD’s of figures 4a-x.

As discussed previously, the a posteriori covariance matrix CM is also derived

from the PPD and the square roots of the diagonal terms provide the standard deviation

of the average values of figures 5a-b. Figures 6a-b show the standard deviations of

figures 5a-b as a function of generation. As would be expected for the optimal range of

13

X1, the standard deviations tend to converge to a value of 0.7 except for the very high

pm case. The test case pm = 1/10 has a much higher standard deviation than the others

which is to be expected from the scatter of figure 3a. The standard deviations of X2

converge to a value close to 0.3 which is also to be expected for a random distribution

between 0 and 1.

Since X1 and X2 are completely independent in this problem one would expect

their covariance and correlation to be at or near zero. As Figures 7 and 8 show, this is

in fact the case and was achieved by generation 20. In fact most of the important

features of all the data previously discussed was achieve by generation 20 and then

maintained through generation 100. The only obvious exception to this was the

standard deviations of figure 6 which slowly converge.

The eigenvalues of CM are a standard measure to determine how well the

problem is being optimized. While many optimality conditions can be obtained from the

eigenvalues and eigenvectors, the simplest would be the minimization of the sum of the

eigenvalues. As shown in figure 9, the two eigenvalues of the 2 by 2 CM in general do

decrease with generation, which indicates a successful optimization.

The astute reader will notice that the eigenvalues converge towards the standard

deviations of figures 6a-b. The reason for this is that the covariance of X1 and X2 is

virtually zero and thus CM is converging towards a diagonal matrix with each generation.

Since the eigenvalues of a diagonal matrix are the square roots of the diagonal terms of

the matrix this behavior is to be expected. In a CM with nonzero off diagonal terms the

eigenvalues and standard deviations would differ.

Analysis of the eigenvectors that correspond to the eigenvalues of figure 9a and

9b (see Table I) indicates that for all the mutation rates, λ1 corresponds to the X2

principle component and λ2 corresponds to the X1 principle component. Therefore,

owing to the small value of λ1 compared to λ2 one can safely conclude that only one

variable in this optimization is significant and that variable is X1. A rather interesting

item of information from Table I is that as the mutation rate (noise) increases, so does

the apparent sensitivity of X1 as indicated by λ2. This is the result of the very high

14

mutation rate accentuating the lack of correlation between X1 and X2. This accentuation

can be seen less dramatically in Figures 7 and 8.

3.0 Conclusions
This report has accomplished a number of goals. First, the intimate relationship

between Bayesian statistics and genetic algorithms has been elucidated. It has been

shown that the GA uses Bayes’ Theorem to select members for the crossover operator

and thus a GA can be formally described as a Bayesian Inference Engine. Second, the

previously used fuzzy logic based multiple objective selection procedure has been

modified to make it simpler to implement and congruent with a formal execution of

Bayes’ Theorem. The subroutines necessary for this selection procedure are provided

in Appendix A. Third, the framework of Bayesian inference has been used to better

extract information out of the evolved population of a GA. Since the output of the GA is

the PPD of the optimization problem, the a posteriori covariance matrix can be derived

and the eigenvalues and eigenvectors of which provide an important measure as to the

performance of the GA and the sensitivity of the parameters. Likewise, the PPD itself

efficiently suppresses much of the noise generated in the population due to the GA’s

inherently stochastic nature. This is an important accomplishment since previous

sensitivity analysis attempts with GA’s were unable to separate true parameter variation

from the noise introduced by the stochastic nature of the GA. The code for the

Bayesian inference engine is provided in Appendix B.

In more complex optimization problems, the PPD can be used to select optimal

model parameter vectors. A set of these vectors can then be incorporated into the

forward problem model for conditions in which experimental data is not available. The

resulting average and standard deviation of the set then provides insight as to where

the next experiment should be conducted.

4.0 Acknowledgments
Funded by the Department of Defense, the Department of Energy and Los

Alamos National Laboratory which is operated by the University of California under

contract number W-7405-ENG-36.

15

16

5.0 References
G. Antelman, 1997, “Elementary Bayesian Statistics,” Eds. A. Madansky, R. McCulloch,

Edward Elgar Publishing, Inc., Lyme, NH.
T. Bayes, 1763, “An Essay towards solving a problem in the doctrine of Chances,”

Philosophical Transactions of the Royal Society, 53, 370-418.
A. J. W. Duijndam, 1988a, “Bayesian Estimation in Seismic Inversion. Part I: Principles,”

Geophysical Prospecting, 36, 878-898.
A. J. W. Duijndam, 1988b, “Bayesian Estimation in Seismic Inversion. Part II:

Uncertainty Analysis,” Geophysical Prospecting, 36, 899-918.
P. Gerstoft and C. F. Mecklenbräuker, 1998, “Ocean Acoustic Inversion with Estimation

of a posteriori probability distributions,” Journal of the Acoustical Society of
America, 104, 2, 808-819.

D. E. Goldberg, 1989, “Genetic Algorithms in Search, Optimization, and Machine
Learning,” Addison-Wesley Publishing Company, Inc., New York.

S. Mallick, 1995, “Model-based Inversion of Amplitude-variations-with-offset Data Using
a Genetic Algorithm,” Geophysics, 60, 4, 939-954.

B. J. Reardon, 1998a, “Optimization of Densification Modeling Parameters of Beryllium
Powder Using a Fuzzy Logic Based Multiobjective Genetic Algorithm,” Modeling
and Simulation in Materials Science and Engineering, 6, 735-746,
http://www.iop.org/Journals/ms

B. J. Reardon, 1998b, “Fuzzy Logic Vs. Niched Pareto Multiobjective Genetic Algorithm
Optimization,” Modeling and Simulation in Materials Science and Engineering, 6,
717-734, 1998, http://www.iop.org/Journals/ms

B. J. Reardon, 1998c, “Optimization Of Densification Modeling Parameters Of Beryllium
Powder Using A Fuzzy Logic Based Multiobjective Genetic Algorithm,” Los
Alamos National Laboratory Unclassified Report, LA-UR-98-1036, March 1998.
http://lib-www.lanl.gov/la-pubs/00412623.pdf

B. J. Reardon, 1998d, “GENES 2.0 User’s Guide: A Guide to a Fuzzy Logic Based
Multiobjective Genetic Algorithm in FORTRAN 77,” Los Alamos National
Laboratory Unclassified Report, LA-UR-98-3578, July 1998. http://lib-
www.lanl.gov/la-pubs/00412972.pdf

B. J. Reardon, 1998e, “Optimization Of Micromechanical Densification Modeling
Parameters For Copper Powder Using A Fuzzy Logic Based Multiobjective
Genetic Algorithm,” Los Alamos National Laboratory Unclassified Report, LA-UR-
98-0419, January 1998. http://lib-www.lanl.gov/la-pubs/00412622.pdf

B. J. Reardon, 1997a, “Fuzzy Logic Vs. Niched Pareto Multiobjective Genetic Algorithm
Optimization: Part I. Schaffer’s F2 Problem,” Los Alamos National Laboratory
Unclassified Report, LA-UR-97-3675, September 1997. http://lib-www.lanl.gov/la-
pubs/00412620.pdf

B. J. Reardon, 1997b, “Fuzzy Logic Vs. Niched Pareto Multiobjective Genetic Algorithm
Optimization: Part II. A Simplified Born-Mayer Problem,” Los Alamos National
Laboratory Unclassified Report, LA-UR-97-3676, September 1997. http://lib-
www.lanl.gov/la-pubs/00412621.pdf

17

J. D. Schaffer, 1988, “Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms,” Proceedings of the 1st International Conference on Genetic
Algorithms and their Applications, July 24-26, Carnegie-Mellon University,
Pittsburgh, Pa, Vol 1, Ed J. Gregenstette, (Hillsdale, NJ, Lawrence Erlbaum
Associates) pp 93-100.

M. K. Sen, B. B. Bhattacharya, P. L. Stoffa, 1993, “Nonlinear inversion of resistively
sounding data,” Geophysics, 58, 4, 496-507.

M. K. Sen and P. L. Stoffa, 1992, “Rapid sampling of model space using genetic
algorithms: Examples from seismic waveform inversion,” Geophysics Journal
International, 108, 281-292.

M. K. Sen and P. L. Stoffa, 1996, “Bayesian inference, Gibb’s sampler and uncertainty
estimation in geophysical inversion,” Geophysical Prospecting, 44, 313-350.

A. Tarantola, 1987, “Inverse Problem Theory, Methods for Data Fitting and Parameter
Estimation,” Elsevier, Amsterdam.

18

6.0 Tables

Table I. The final eigenvalues and corresponding eigenvectors for each mutation rate
test case. Note that higher mutation rates increase the eigenvalue of λ2 or,
alternatively, make X1 more sensitive. This is because a high mutation rate accentuates
the lack of correlation between X1 and X2.

pm λ1 ε1 λ2 ε2

1/10 0.28678 2.7522E-4
-1.0000

1.5102 -1.0000
-2.7522E-4

1/100 0.28695 -3.8432E-4
-1.0000

0.72203 -1.0000
3.8432E-4

1/1000 0.27888 -5.8164E-3
-0.99998

0.72118 -0.99998
5.8164E-3

1/10000 0.29420 9.4257E-3
-0.99996

0.67292 -0.99996
-9.4257E-3

19

7.0 Figures

0

0.2

0.4

0.6

0.8

1

1.2

f j'(M
i)

D
j

D
j
+E

jD
j
-E

j

f
j:max

f
j:min

Figure 1. The fuzzy logic based fitness function.

-6

-4

-2

0

2

4

6

0 20 40 60 80 100

X
1

Generation

-6

-4

-2

0

2

4

6

0 20 40 60 80 100

X
1

Generation

a b
Figure 2. A scatter plot showing the distribution of X1 as a function of generation for
using the a) selection routine from Reardon (1998 a, b, d); b) the newer selection
routine presented in this paper.

20

-6

-4

-2

0

2

4

6

0 20 40 60 80 100

X
1

Generation

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

X
2

Generation

a) X1, pm=1 in 10; b) X2, pm=1 in 10;

-6

-4

-2

0

2

4

6

0 20 40 60 80 100

X
1

Generation

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

X
2

Generation

c) X1, pm=1 in 100; d) X2, pm=1 in 100;
Figure 3. The scatter plots of the distribution of X1 and X2 as a function of generation for
various mutation rates, pm.

21

-6

-4

-2

0

2

4

6

0 20 40 60 80 100

X
1

Generation

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

X
2

Generation

e) X1, pm=1 in 1000; f) X2, pm=1 in 1000;

-6

-4

-2

0

2

4

6

0 20 40 60 80 100

X
1

Generation

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

X
2

Generation

g) X1, pm=1 in 10000; h) X2, pm=1 in 10000;
Figure 3. Continued.

22

0

1000

2000

3000

4000

5000

-6 -4 -2 0 2 4 6
X

1

i) Stack histogram of figure 3a.
Figure 3. Continued

23

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

a) X1, Gen: 0, pm=1 in 10; b) X2, Gen: 0, pm=1 in 10;

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.005

0.01

0.015

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

c) X1, Gen: 10, pm=1 in 10; d) X2, Gen: 10, pm=1 in 10;
Figure 4. The PPD’s for X1 and X2 at generation 0, 10, and 100 for different mutation
rates.

24

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

e) X1, Gen: 100, pm=1 in 10; f) X2, Gen: 100, pm=1 in 10;

0

0.005

0.01

0.015

0.02

0.025

0.03

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

g) X1, Gen: 0, pm=1 in 100; h) X2, Gen: 0, pm=1 in 100;
Figure 4. Continued.

25

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

i) X1, Gen: 10, pm=1 in 100; j) X2, Gen: 10, pm=1 in 100;

0

0.01

0.02

0.03

0.04

0.05

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.002

0.004

0.006

0.008

0.01

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

k) X1, Gen: 100, pm=1 in 100; l) X2, Gen:100, pm=1 in 100;
Figure 4. Continued.

26

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

m) X1, Gen: 0, pm=1 in 1000; n) X2, Gen:0, pm=1 in 1000;

0

0.02

0.04

0.06

0.08

0.1

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

o) X1, Gen: 10, pm=1 in 1000; p) X2, Gen:10, pm=1 in 1000;
Figure 4. Continued.

27

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.005

0.01

0.015

0.02

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

q) X1, Gen: 100, pm=1 in 1000; r) X2, Gen:100, pm=1 in 1000;

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

2 10-6

4 10-6

6 10-6

8 10-6

1 10-5

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

s) X1, Gen: 0, pm=1 in 10000; t) X2, Gen:0, pm=1 in 10000;
Figure 4. Continued.

28

0

0.02

0.04

0.06

0.08

0.1

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

u) X1, Gen: 10, pm=1 in 10000; v) X2, Gen:10, pm=1 in 10000;

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-6 -4 -2 0 2 4 6

P
P

D

X
1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.2 0.4 0.6 0.8 1

P
P

D

X
2

w) X1, Gen: 100, pm=1 in 10000; x) X2, Gen:100, pm=1 in 10000;
Figure 4. Continued.

29

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 20 40 60 80 100

x1, 1/10
x1, 1/100
x1, 1/1000
x1, 1/10000

<
X

1>

Generation

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0 20 40 60 80 100

x2, 1/10
x2, 1/100
x2, 1/1000
x2, 1/10000

<
X

2>

Generation

a b
Figure 5. The <M> for X1 and X2 as a function of generation for different mutation rates.
a) X1; b) X2;

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

x1, 1/10

x1, 1/100

x1, 1/1000
x1, 1/10000

σ(
X

1)

Generation

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0 20 40 60 80 100

x2, 1/10

x2, 1/100
x2, 1/1000
x2, 1/10000

σ(
X

2)

Generation

a b
Figure 6. The standard deviation of the marginal mean models of figure 4. for X1 and X2

as a function of generation for different mutation rates. a) X1; b) X2;

30

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100

1/10

1/100

1/1000

1/10000

C
O

V
(X

1,X
2)

Generation

Figure 7. The covariance of X1 and X2 as a function of generation for different mutation
rates.

-0.05

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

1/10
1/100
1/1000
1/10000

C
O

R
R

(X

1,X
2)

Generation

Figure 8. The correlation coefficient of X1 and X2 as a function of generation for different
mutation rates.

31

0.26

0.27

0.28

0.29

0.3

0.31

0 20 40 60 80 100

l1, 1/10000
l1, 1/1000
l1, 1/100
l1, 1/10

λ 1

Generation

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

l2, 1/10000
l2, 1/1000
l2, 1/100
l2, 1/10

λ 2

Generation

a b
Figure 9. The eigenvalues of the posterior covariance matrix as a function of generation
for different mutation rates. a) λ1; b) λ2;

32

Appendix A: The modified Genetic Algorithm Selection code

Appendix A.1: FORTRAN 77 Subroutine FITNESSPROB
**
**

SUBROUTINE FITNESSPROB()
**
**
c THIS SUBROUTINE DETERMINES THE FUZZY FITNESS OF EACH MEMBER
C OF THE POPULATION AND SAVES THIS DATA IN PROBARRAY
**

INCLUDE 'PARAMSGA'
 INCLUDE 'PARAMSOBJ'
 INCLUDE 'COMMONSOBJ'
 INCLUDE 'COMMONSGA'

INTEGER I,II
REAL AVERAGE,X1,X2,X3,X4,X5,Y1,Y2,Y3,Y4,Y5
REAL TOP,BOTTOM

DIMENSION RMAX(MXNFNCT),RMIN(MXNFNCT)

TOP = 1.0
BOTTOM = 0.0

ccc find the most unfit members of the population for the fuzzy logic selectionmethod
 DO 40 I=1,NFNCT

RMAX(I) = FNCT(I)+ERROR(I)
RMIN(I) = FNCT(I)-ERROR(I)

 40 CONTINUE
 DO 41 I = 1,IPOPU
 DO 41 II = 1,NFNCT

IF (ATT1(I,II).GT.RMAX(II)) RMAX(II) = ATT1(I,II)
IF (ATT1(I,II).LT.RMIN(II)) RMIN(II) = ATT1(I,II)

 41 CONTINUE

ccC For all objectives or functions determine the fuzzy fitness
 DO 45 I = 1,IPOPU

 AVERAGE = 0.
DO 35 II = 1,NFNCT

X1 = RMIN(II)
 Y1 = BOTTOM
 X2 = FNCT(II)-ERROR(II)
 Y2 = TOP
 X3 = FNCT(II)
 Y3 = TOP
 X4 = FNCT(II)+ERROR(II)
 Y4 = TOP
 X5 = RMAX(II)
 Y5 = BOTTOM

TEMP = AVG(X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,ATT1(I,II))
IF (TEMP.LE.1.0E-6) TEMP = 0.0
AVERAGE = AVERAGE+TEMP

 35 CONTINUE
 PROBARRAY(I) = AVERAGE/REAL(NFNCT)
 45 CONTINUE

RETURN

END

33

Appendix A.2: FORTRAN 77 Function AVG
**
**
 REAL FUNCTION AVG(X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X)
**
**
ccc This function is the heart of the fuzzy logic selection method.
ccc The points listed above define the five major points in a
ccc fuzzy logic rule set:
ccc 1\ /5
ccc \ /
ccc \ /
ccc 2__3__4
ccc AVG determines between which two points the value of X lies
ccc and then calls POINT to determine the cooresponding value of Y
ccc

REAL X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X,POINT

IF (X1.GT.X2) THEN
PRINT*,'ERROR,X1,X2'
STOP

ENDIF
IF (X2.GT.X3) THEN

PRINT*,'ERROR,X2,X3'
STOP

ENDIF
IF (X3.GT.X4) THEN

PRINT*,'ERROR,X3,X4'
STOP

ENDIF
IF (X4.GT.X5) THEN

PRINT*,'ERROR,X4,X5'
STOP

ENDIF

IF (X.LE.X2) THEN
AVG = POINT(X1,Y1,X2,Y2,X)

ELSEIF (X.LE.X3) THEN
AVG = POINT(X2,Y2,X3,Y3,X)

ELSEIF (X.LE.X4) THEN
AVG = POINT(X3,Y3,X4,Y4,X)

ELSEIF (X.LE.X5) THEN
AVG = POINT(X4,Y4,X5,Y5,X)

ELSE
PRINT*,'ERROR,OUT OF RANGE'
STOP

ENDIF

RETURN
END

Appendix A.3: FORTRAN 77 Function POINT
**
**

REAL FUNCTION POINT(X1,Y1,X2,Y2,X)
**
**
ccc The function point sends back a value of Y given two points on a line and a value of X.
**

REAL X1,Y1,X2,Y2,X,SLOPE,B

IF (ABS(X1-X2).LE.1.0E-6) THEN
POINT = Y1

34

ELSE
SLOPE = (Y2-Y1)/(X2-X1)
B = Y1-SLOPE*X1
POINT = SLOPE*X+B

ENDIF

RETURN
END

Appendix A.4: FORTRAN 77 Subroutine REPLI
**
**
 SUBROUTINE REPLI(MAX,MEM)
**
**
C THIS SUBROUTINE RETURNS A MEMBER OF THE POPULATION (MEM) BASED ON ITS
C FITNESS AND NICHE CROWDING. THE PROCEDURE INVOLVES FIRST FINDING TWO
C FIT MEMBERS AND THEN SELECTING THE LEAST CROWDED.
**

 INCLUDE 'PARAMSGA'
 INCLUDE 'PARAMSOBJ'
 INCLUDE 'COMMONSOBJ'
 INCLUDE 'COMMONSGA'

INTEGER M,N,MEM,MAX
REAL MFIT,NFIT

C SELECT TO MEMBERS AND GET THEIR FUZZY FITNESS
CALL PROBSELECT(M,MFIT)
CALL PROBSELECT(N,NFIT)

IF (ABS(MFIT-NFIT).LE.0.001) THEN
c count up the crowding factor for M and N IF
C M AND N HAVE SIMILAR FITNESSES

RN1 = PHCOUNTER(M,MAX)
RN2 = PHCOUNTER(N,MAX)

IF (RN1.LT.RN2) THEN
 MEM=M

ELSEIF (RN2.LT.RN1) THEN
MEM=N

ELSE
 IF (URAND(ISEED).LE.0.5) THEN

MEM=M
ELSE

MEM=N
ENDIF

ENDIF
ELSE IF (MFIT.GT.NFIT) THEN

MEM = M
ELSE IF (NFIT.GT.MFIT) THEN

MEM = N
END IF

RETURN

END

Appendix A.4: FORTRAN 77 Subroutine PROBSELECT
**
**

SUBROUTINE PROBSELECT(N,FIT)

35

**
**
C THIS ROUTINE SELECTS A FIT MEMBER OF THE POPULATION AND RETURNS
C ITS FUZZY FITNESS
**

 INCLUDE 'PARAMSGA'
 INCLUDE 'PARAMSOBJ'
 INCLUDE 'COMMONSOBJ'
 INCLUDE 'COMMONSGA'

INTEGER N
REAL R,FIT

ICOUNT = 0

 35 ICOUNT = ICOUNT+1
IF (ICOUNT.GE.10) PRINT*,'ICOUNT=',ICOUNT

C RANDOMLY SELECT A MEMBER FROM THE POPULATION
 N = NINT(URAND(ISEED)*IPOPU+0.5)

C GET A RANDOM NUMBER BETWEEN 0 AND 1
R = URAND(ISEED)
IF ((R.LT.0.).OR.(R.GT.1.)) THEN

PRINT*, 'MAJOR ERROR IN URAND',R
READ(*,*)
STOP

END IF

C GET FITNESS OF N WHICH MUST LAY BETWEEN 0 AND 1
FIT = PROBARRAY(N)
IF ((FIT.LT.0.).OR.(FIT.GT.1.)) THEN

PRINT*, 'MAJOR ERROR IN PROBARRAY',FIT
READ(*,*)
STOP

END IF

C IF R IS LESS THAN OR EQUAL TO FIT THEN
C N IS THE MEMBER SELECTED
C THIS IS ESSENTIALLY A MONTE CARLO SELECTION SCHEME
C IN WHICH THE PROBABILTIY DISTRIBUTION IS DEFINED BY
C THE FUZZY RULE SET.
C

IF (R.LE.FIT) THEN
ELSE

GO TO 35
END IF

RETURN
END

Appendix B: The Bayesian Inference Engine (BIE)

Appendix B.1: Program Bayes
!PROGRAM BAYES--
! THIS PROGRAM CALCULATES THE POSTERIOR PROBABILITY DENSITY (PPD),
! MEAN MODEL <M>, AND THE MEAN MODEL COVARIENCE CMN, AS A FUNCTION
! OF GENERATION NUMBER FROM THE OUTPUT OF A GENETIC ALGORITHM
! OPTIMIZATION ROUTINE
!
! VARIABLES:
! STATUS I/O STATUS INDICATOR

36

! I,II,III DO LOOP COUNTERS
! GENERATIONS NUMBER OF GENERATIONS
! POPULATION_SIZE POPULATION SIZE
! NUMBER_VARIABLES NUMBER OF VARIABLES
! NUMBER_OBJECTIVES NUMBER OF OBJECTIVES
! NUMBER_BIN = 200 NUMBER OF BINS (CONSTANT)
! TEMP JUNK VARIABLE
! VARIABLE_RANGE RANGE OF VARIABLES
! EXPERIMENTAL_DATA EXPERIMENTAL DATA
! EXPERIMENTAL_ERROR EXPERIMENTAL DATA ERROR
! EXPECTATION AVERAGE VALUE FROM PPD
! MODELVALUE REAL VALUES OF BINS
!
! INPUT:
! FILE='HEADGA' GA PARAMETERS
! FILE='HEADVAR' VARIABLE LIMITS
! FILE='HEADOBJ' OBJECTIVE DATA
!
! OUTPUT:
! NONE
!
! SUBROUTINES:
! PPD_GENERATOR
! OPTIMUM_MODEL
! MODEL_VALUE
!
! FUNCTIONS:
! NONE
!---
PROGRAM BAYES

IMPLICIT NONE

INTEGER :: STATUS,I,II,III

INTEGER :: GENERATIONS,POPULATION_SIZE
INTEGER :: NUMBER_VARIABLES
INTEGER :: NUMBER_OBJECTIVES
INTEGER, PARAMETER :: NUMBER_BIN = 200

REAL :: TEMP
REAL, ALLOCATABLE :: VARIABLE_RANGE(:,:)
REAL, ALLOCATABLE :: EXPERIMENTAL_DATA(:),EXPERIMENTAL_ERROR(:),MODELVALUE(:,:)

INTERFACE
SUBROUTINE

PPD_GENERATOR(GENERATIONS,POPULATION_SIZE,NUMBER_VARIABLES,NUMBER_OBJECTIVES,VARIABLE_RANGE,&
EXPERIMENTAL_DATA,EXPERIMENTAL_ERROR,NUMBER_BIN)
IMPLICIT NONE
INTEGER :: I,II,IIISTATUS
INTEGER,INTENT(IN) :: GENERATIONS,POPULATION_SIZE
INTEGER,INTENT(IN) :: NUMBER_VARIABLES
INTEGER,INTENT(IN) :: NUMBER_OBJECTIVES
INTEGER,INTENT(IN) :: NUMBER_BIN
REAL,INTENT(IN) :: VARIABLE_RANGE(NUMBER_VARIABLES,2)
REAL,INTENT(IN) ::

EXPERIMENTAL_DATA(NUMBER_OBJECTIVES),EXPERIMENTAL_ERROR(NUMBER_OBJECTIVES)
REAL, ALLOCATABLE :: MODEL_VAR(:,:),CALC_DATA(:,:),PM(:),PPD(:,:)

END SUBROUTINE PPD_GENERATOR

SUBROUTINE
OPTIMUM_MODEL(GENERATIONS,NUMBER_VARIABLES,NUMBER_BIN,POPULATION_SIZE,MODELVALUE)

IMPLICIT NONE
INTEGER :: I, II, STATUS, SEED, N
INTEGER, INTENT(IN) :: GENERATIONS,NUMBER_VARIABLES,NUMBER_BIN,POPULATION_SIZE
REAL, INTENT(IN) :: MODELVALUE(NUMBER_BIN,NUMBER_VARIABLES)

37

REAL, ALLOCATABLE :: PPD(:,:),OP_MOD(:,:)
LOGICAL :: SELECTED

END SUBROUTINE OPTIMUM_MODEL

SUBROUTINE MODEL_VALUE(NUMBER_VARIABLES,NUMBER_BIN,VARIABLE_RANGE,MODELVALUE)
IMPLICIT NONE
INTEGER :: I,II
INTEGER, INTENT(IN) :: NUMBER_VARIABLES,NUMBER_BIN
REAL, INTENT(IN) :: VARIABLE_RANGE(NUMBER_VARIABLES,2)
REAL, INTENT(OUT) :: MODELVALUE(NUMBER_BIN,NUMBER_VARIABLES)

END SUBROUTINE MODEL_VALUE
END INTERFACE

OPEN (UNIT=10,FILE='HEADGA',STATUS='OLD',ACTION='READ',POSITION='REWIND',IOSTAT=STATUS)
IF (STATUS>0) STOP "CAN NOT OPEN FILE: HEADGA"

READ(UNIT=10,FMT=*,ERR=20,IOSTAT=STATUS)
READ(UNIT=10,FMT=*,ERR=20,IOSTAT=STATUS) GENERATIONS
READ(UNIT=10,FMT=*,ERR=20,IOSTAT=STATUS) POPULATION_SIZE

CLOSE(UNIT=10)

OPEN (UNIT=10,FILE='HEADVAR',STATUS='OLD',ACTION='READ',POSITION='REWIND',IOSTAT=STATUS)
IF (STATUS>0) STOP "CAN NOT OPEN FILE: HEADVAR"

READ(UNIT=10,FMT=*,ERR=20,IOSTAT=STATUS) NUMBER_VARIABLES
ALLOCATE(VARIABLE_RANGE(NUMBER_VARIABLES,2),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR VARIABLE_RANGE"

VAR_READER: DO I = 1,NUMBER_VARIABLES,1
READ(UNIT=10,FMT=*,ERR=20,IOSTAT=STATUS) (VARIABLE_RANGE(I,II),II=1,2,1)

END DO VAR_READER
CLOSE(UNIT=10)

OPEN (UNIT=10,FILE='HEADOBJ',STATUS='OLD',ACTION='READ',POSITION='REWIND',IOSTAT=STATUS)
IF (STATUS>0) STOP "CAN NOT OPEN FILE: HEADOBJ"

READ(UNIT=10,FMT=*,ERR=20,IOSTAT=STATUS) NUMBER_OBJECTIVES
ALLOCATE(EXPERIMENTAL_DATA(NUMBER_OBJECTIVES),EXPERIMENTAL_ERROR(NUMBER_OBJECTIVES),ST

AT=STATUS)
IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR EXPERIMENTAL_DATA AND/OR

EXPERIMENTAL_ERROR"

EXP_READER: DO I = 1,NUMBER_OBJECTIVES,1
READ(UNIT=10,FMT=*,ERR=20,IOSTAT=STATUS) EXPERIMENTAL_DATA(I),EXPERIMENTAL_ERROR(I)

END DO EXP_READER
20 IF (STATUS > 0) PRINT*,'INPUT DATA ERROR'
CLOSE(UNIT=10)

CALL
PPD_GENERATOR(GENERATIONS,POPULATION_SIZE,NUMBER_VARIABLES,NUMBER_OBJECTIVES,VARIABLE_RANGE,&
EXPERIMENTAL_DATA,EXPERIMENTAL_ERROR,NUMBER_BIN)

ALLOCATE(MODELVALUE(NUMBER_BIN,NUMBER_VARIABLES),STAT=STATUS)
IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR MODELVALUE"

CALL MODEL_VALUE(NUMBER_VARIABLES,NUMBER_BIN,VARIABLE_RANGE,MODELVALUE)

CALL OPTIMUM_MODEL(GENERATIONS,NUMBER_VARIABLES,NUMBER_BIN,POPULATION_SIZE,MODELVALUE)

DEALLOCATE(MODELVALUE,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR MODELVALUE"

END PROGRAM BAYES

38

Appendix B.2: SUBROUTINE PPD_GENERATOR
!PPD_GENERATOR--
!THIS ROUTINE GENERATES THE POSTERIOR PROBABILITY DENSITY AND SAVES
!IT IN A FILE CALLED PPD. THE FILE CONTAINS THE PPD FOR EACH MODEL VARIABLE
!FOR EACH GENERATION STARTING WITH GENERATION 0.
!
! VARIABLES:
! I,II,III DO LOOP COUNTERS
! STATUS I/O STATUS INDICATOR
! BIN_NUMBER BIN NUMBER FROM BINNER
! GENERATIONS NUMBER OF GENERATIONS
! POPULATION_SIZE POPULATION SIZE
! NUMBER_VARIABLES NUMBER OF VARIABLES
! NUMBER_OBJECTIVES NUMBER OF OBJECTIVES
! NUMBER_BIN NUMBER OF BINS
! VARIABLE_RANGE ARRAY OF MIN AND MAX OF VARIABLES
! EXPERIMENTAL_DATA EXPERIMENTAL DATA
! EXPERIMENTAL_ERROR EXPERIMENTAL DATA ERROR
! MODEL_VAR MODEL VARIABLES
! CALC_DATA CALCULATED DATA
! PM PROBABILITY DISTRIBUTIONS
! PPD POSTIERIOR PROBABILITY DENSITY
! SUMTOTAL SUM OF ALL SCALED FITNESS
! INPUT:
! GENERATIONS
! POPULATION_SIZE
! NUMBER_VARIABLES
! NUMBER_OBJECTIVES
! VARIABLE_RANGE
! EXPERIMENTAL_DATA
! EXPERIMENTAL_ERROR
! TAPE7 CALCULATED DATA
! TAPE8 MODEL DATA
! OUTPUT:
! PPD POSTERIOR PROBABILITY DENSITY FILE
! SUBROUTINES:
! NORMAL
! FUNCTIONS:
! BINNER
!---

SUBROUTINE
PPD_GENERATOR(GENERATIONS,POPULATION_SIZE,NUMBER_VARIABLES,NUMBER_OBJECTIVES,VARIABLE_RANGE,&
EXPERIMENTAL_DATA,EXPERIMENTAL_ERROR,NUMBER_BIN)

IMPLICIT NONE

INTEGER :: I,II,III,STATUS,IERR,BIN_NUMBER
INTEGER,INTENT(IN) :: GENERATIONS,POPULATION_SIZE
INTEGER,INTENT(IN) :: NUMBER_VARIABLES
INTEGER,INTENT(IN) :: NUMBER_OBJECTIVES
INTEGER,INTENT(IN) :: NUMBER_BIN

REAL,INTENT(IN) :: VARIABLE_RANGE(NUMBER_VARIABLES,2)
REAL,INTENT(IN) :: EXPERIMENTAL_DATA(NUMBER_OBJECTIVES),EXPERIMENTAL_ERROR(NUMBER_OBJECTIVES)
REAL, ALLOCATABLE :: MODEL_VAR(:,:),CALC_DATA(:,:),PM(:),PPD(:,:),AVERAGEMODEL(:),PROD1(:,:),&

COVAR(:,:),CORR(:,:),COVARTEMP(:,:),W(:),Z(:,:),FV1(:)
REAL :: SUMTOTAL,A,B,C,X1,X2
!---

INTERFACE
FUNCTION BINNER(VARID,VAR,NUMBER_BIN,NUMBER_VARIABLES,VARIABLE_RANGE)

IMPLICIT NONE
INTEGER :: BINNER
INTEGER, INTENT(IN) :: VARID,NUMBER_BIN,NUMBER_VARIABLES
REAL, INTENT(IN) :: VAR,VARIABLE_RANGE(NUMBER_VARIABLES,2)

END FUNCTION BINNER

SUBROUTINE NORMAL(POPULATION_SIZE,NUMBER_OBJECTIVES,EXPERIMENTAL_DATA,&

39

EXPERIMENTAL_ERROR,CALC_DATA,PM)
IMPLICIT NONE
INTEGER :: I,II
INTEGER, INTENT(IN) :: POPULATION_SIZE
INTEGER, INTENT(IN) :: NUMBER_OBJECTIVES
REAL, INTENT(IN) ::

EXPERIMENTAL_DATA(NUMBER_OBJECTIVES),EXPERIMENTAL_ERROR(NUMBER_OBJECTIVES)
REAL, INTENT(IN) :: CALC_DATA(POPULATION_SIZE,NUMBER_OBJECTIVES)
REAL, INTENT(OUT) :: PM(POPULATION_SIZE)
REAL, PARAMETER :: SCALER = 1.0
REAL, ALLOCATABLE :: RMAX(:),RMIN(:)
REAL :: X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X,AVERAGE

END SUBROUTINE NORMAL
END INTERFACE

!---
ALLOCATE(MODEL_VAR(POPULATION_SIZE,NUMBER_VARIABLES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR MODEL_VAR"
ALLOCATE(CALC_DATA(POPULATION_SIZE,NUMBER_OBJECTIVES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR CALC_DATA"
ALLOCATE(PM(POPULATION_SIZE),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR PM"
ALLOCATE(PPD(NUMBER_VARIABLES,NUMBER_BIN),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR PPD"
!---
ALLOCATE(AVERAGEMODEL(NUMBER_VARIABLES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR AVERAGEMODEL"
ALLOCATE(COVAR(NUMBER_VARIABLES,NUMBER_VARIABLES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR COVAR"
ALLOCATE(CORR(NUMBER_VARIABLES,NUMBER_VARIABLES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR CORR"
!---
ALLOCATE(PROD1(NUMBER_VARIABLES,NUMBER_VARIABLES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR PROD1"
ALLOCATE(COVARTEMP(NUMBER_VARIABLES,NUMBER_VARIABLES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR COVARTEMP"
!---
ALLOCATE(W(NUMBER_VARIABLES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR W"
ALLOCATE(Z(NUMBER_VARIABLES,NUMBER_VARIABLES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR Z"
ALLOCATE(FV1(NUMBER_VARIABLES),STAT=STATUS)

IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR FV1"
!---

!---
! INPUT FILES
!---
OPEN (UNIT=10,FILE='TAPE7',STATUS='OLD',ACTION='READ',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: TAPE7"
OPEN (UNIT=20,FILE='TAPE8',STATUS='OLD',ACTION='READ',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: TAPE8"
!---
! OUTPUT FILES
!---
OPEN (UNIT=30,FILE='PPD',STATUS='REPLACE',ACTION='WRITE',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: PPD"
OPEN (UNIT=40,FILE='EXPECTATION',STATUS='REPLACE',ACTION='WRITE',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: AVERAGETEMP"
OPEN (UNIT=50,FILE='COVARIENCE',STATUS='REPLACE',ACTION='WRITE',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: COVARITEMP"
OPEN (UNIT=60,FILE='CORRELATION',STATUS='REPLACE',ACTION='WRITE',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: CORRELATETEMP"
OPEN (UNIT=70,FILE='STANDARD_DEV',STATUS='REPLACE',ACTION='WRITE',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: STANDARD_DEV"
OPEN (UNIT=80,FILE='EIGENVALUES',STATUS='REPLACE',ACTION='WRITE',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: EIGENVALUES"
OPEN (UNIT=90,FILE='EIGENVECTORS',STATUS='REPLACE',ACTION='WRITE',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: EIGENVECTORS"

40

!---

PPD = 0.0
SUMTOTAL = 0.0

GEN_LOOP1: DO I = 0,GENERATIONS
CALC_DATA = 0.0
MODEL_VAR = 0.0

! READING IN THE OBJECTIVE VALUES
POP_LOOP1: DO II = 1,POPULATION_SIZE,1

READ(UNIT=10,FMT=*,ERR=40,IOSTAT=STATUS) (CALC_DATA(II,III),III=1,NUMBER_OBJECTIVES,1)
END DO POP_LOOP1
POP_LOOP4: DO II = 1,POPULATION_SIZE,1

OBJ_LOOP1: DO III = 1,NUMBER_OBJECTIVES,1
CALC_DATA(II,III) = CALC_DATA(II,III) + EXPERIMENTAL_DATA(III)

END DO OBJ_LOOP1
END DO POP_LOOP4

! READING IN THE VARIABLE VALUES
POP_LOOP2: DO II = 1,POPULATION_SIZE,1

READ(UNIT=20,FMT=*,ERR=40,IOSTAT=STATUS) (MODEL_VAR(II,III),III=1,NUMBER_VARIABLES)
END DO POP_LOOP2

CALL
NORMAL(POPULATION_SIZE,NUMBER_OBJECTIVES,EXPERIMENTAL_DATA,EXPERIMENTAL_ERROR,CALC_DATA,PM)

SUMTOTAL = SUMTOTAL + SUM(PM)

! BIN THE DATA TO CREATE THE POSTERIOR PROBABILITY DENSITY
POP_LOOP3: DO II = 1,POPULATION_SIZE,1

VAR_LOOP1: DO III = 1,NUMBER_VARIABLES,1
BIN_NUMBER =

BINNER(III,MODEL_VAR(II,III),NUMBER_BIN,NUMBER_VARIABLES,VARIABLE_RANGE)
PPD(III,BIN_NUMBER) = PPD(III,BIN_NUMBER)+PM(II)

END DO VAR_LOOP1
END DO POP_LOOP3
VAR_LOOP2: DO II = 1,NUMBER_VARIABLES,1

WRITE(UNIT=30,FMT=*,ERR=40,IOSTAT=STATUS) (PPD(II,III),III=1,NUMBER_BIN,1)
END DO VAR_LOOP2

! CALCULATION THE EXPECATION VALUE
VAR_LOOP3: DO II = 1, NUMBER_VARIABLES, 1

POP_LOOP5: DO III = 1,POPULATION_SIZE, 1
AVERAGEMODEL(II) = AVERAGEMODEL(II) + MODEL_VAR(III,II)*PM(III)

END DO POP_LOOP5
END DO VAR_LOOP3
WRITE(UNIT=40,FMT=*,ERR=40,IOSTAT=STATUS) I,(AVERAGEMODEL(II)/SUMTOTAL,II=1,NUMBER_VARIABLES,1)

! CALCULATION OF THE COVARIENCE MATRIX
POP_LOOP6: DO II = 1,POPULATION_SIZE, 1

CALL MATMUL1(PROD1,MODEL_VAR(II,1:NUMBER_VARIABLES:1),&
MODEL_VAR(II,1:NUMBER_VARIABLES:1),NUMBER_VARIABLES)
COVARTEMP = COVARTEMP + PROD1*PM(II)

END DO POP_LOOP6
CALL MATMUL1(PROD1,AVERAGEMODEL/SUMTOTAL,AVERAGEMODEL/SUMTOTAL,NUMBER_VARIABLES)
COVAR = (COVARTEMP/SUMTOTAL) - PROD1
WRITE(UNIT=50,FMT='(I4)',ADVANCE='NO',ERR=40,IOSTAT=STATUS) I
VAR_LOOP4: DO II = 1,NUMBER_VARIABLES,1

WRITE(UNIT=50,FMT='(20E15.5)',ADVANCE='NO',ERR=40,IOSTAT=STATUS) &
(COVAR(II,III),III=II+1,NUMBER_VARIABLES,1)

END DO VAR_LOOP4
WRITE(UNIT=50,FMT=*,ERR=40,IOSTAT=STATUS)

!Calculate Eigenvalues of the Covariance Matrix
!cc
!ccc The Eigenvalue/Eigenvector subroutines come from:

41

!ccc “Matrix Eigensystems Routines – EISPACK Guide” Second Edition
!ccc B.T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, C. B. Moler
!ccc Published in Lecture Notes in Computer Science
!ccc Edited by G. Goos, J. Hartmanis
!ccc Springer-Verlag, New York, 1976
! cc

W = 0.0
FV1 = 0.0
Z = 0.0
CALL TRED2(NUMBER_VARIABLES,NUMBER_VARIABLES,COVAR,W,FV1,Z)
CALL TQL2(NUMBER_VARIABLES,NUMBER_VARIABLES,W,FV1,Z,IERR)
IF (IERR /= 0) PRINT*,'PROBLEM WITH EIGENSYSTEM'
W = W*W
W = SQRT(SQRT(W))
WRITE(UNIT=80,FMT=*,ERR=40,IOSTAT=STATUS) I,(W(II),II=1,NUMBER_VARIABLES),SUM(W)
IF (I==GENERATIONS) THEN

VAR_LOOP5: DO II = 1,NUMBER_VARIABLES,1
WRITE(UNIT=90,FMT=*,ERR=40,IOSTAT=STATUS) (Z(II,III),III=1,NUMBER_VARIABLES)

END DO VAR_LOOP5
END IF

!CALCULATION OF THE CORRELATION MATRIX
VAR_LOOP6:DO II = 1, NUMBER_VARIABLES, 1

VAR_LOOP7: DO III = 1,NUMBER_VARIABLES, 1
CORR(II,III) = COVAR(II,III)/(SQRT(COVAR(II,II))*SQRT(COVAR(III,III)))

END DO VAR_LOOP7
END DO VAR_LOOP6
WRITE(UNIT=60,FMT='(I4)',ADVANCE='NO',ERR=40,IOSTAT=STATUS) I
VAR_LOOP8: DO II = 1,NUMBER_VARIABLES,1

WRITE(UNIT=60,FMT='(20E15.5)',ADVANCE='NO',ERR=40,IOSTAT=STATUS) &
(CORR(II,III),III=II+1,NUMBER_VARIABLES,1)

END DO VAR_LOOP8
WRITE(UNIT=60,FMT=*,ERR=40,IOSTAT=STATUS)

!OUTPUT OF THE STANDARD DEVIATION
COVAR = SQRT(COVAR)
WRITE(UNIT=70,FMT=*,ERR=40,IOSTAT=STATUS) I,(COVAR(III,III),III=1,NUMBER_VARIABLES,1)

END DO GEN_LOOP1
40 IF (STATUS > 0) PRINT*,'INPUT DATA ERROR'

!---
CLOSE(UNIT=90)
CLOSE(UNIT=80)
CLOSE(UNIT=70)
CLOSE(UNIT=60)
CLOSE(UNIT=50)
CLOSE(UNIT=40)
CLOSE(UNIT=30)
CLOSE(UNIT=20)
CLOSE(UNIT=10)
!---

DEALLOCATE(AVERAGEMODEL,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR AVERAGEMODEL"

DEALLOCATE(PROD1,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR PROD1"

DEALLOCATE(COVAR,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR COVAR"

DEALLOCATE(COVARTEMP,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR COVARTEMP"

DEALLOCATE(CORR,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR CORR"

DEALLOCATE(CALC_DATA,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR CALC_DATA"

DEALLOCATE(MODEL_VAR,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR MODEL_VAR"

DEALLOCATE(PM,STAT=STATUS)

42

IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR PM"
DEALLOCATE(PPD,STAT=STATUS)

IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR PPD"
DEALLOCATE(W,STAT=STATUS)

IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR W"
DEALLOCATE(Z,STAT=STATUS)

IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR Z"
DEALLOCATE(FV1,STAT=STATUS)

IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR FV1"

END SUBROUTINE PPD_GENERATOR

Appendix B.3: SUBROUTINE MODEL_VALUE
!MODEL_VALUE--
! THIS SUBROUTINE TAKES AS INPUT THE NUMBER OF VARIABLES, THE NUMBER OF BINS IN THE
! POSTERIOR PROBABILITY DENSTIY (PPD), AND THE VARIABLE RANGE ARRAY FOR EACH VARIABLE
! AND SENDS AS OUTPUT THE ARRAY MODELVALUE WHICH HAS A REAL VALUED ASSIGNMENT GIVEN TO
! EACH BIN
!
! VARIABLES:
! I,II DO LOOP COUNTERS
! NUMBER_VARIABLES NUMBER OF VARIABLES
! NUMBER_BIN NUMBER OF BINS
! VARIABLE_RANGE ARRAY CONTAINING VARIABLE RANGE
! MODELVALUE MODELVALUE ARRAY FOR EACH BIN
! INPUT:
! NUMBER_VARIABLES NUMBER OF VARIABLES
! NUMBER_BIN NUMBER OF BINS
! VARIABLE_RANGE ARRAY CONTAINING VARIABLE RANGE
! OUTPUT:
! MODELVALUE MODELVALUE ARRAY FOR EACH BIN
! SUBROUTINES:
! NONE
! FUNCTIONS:
! BINVAL
!---

SUBROUTINE MODEL_VALUE(NUMBER_VARIABLES,NUMBER_BIN,VARIABLE_RANGE,MODELVALUE)

IMPLICIT NONE

INTEGER :: I,II
INTEGER, INTENT(IN) :: NUMBER_VARIABLES,NUMBER_BIN
REAL, INTENT(IN) :: VARIABLE_RANGE(NUMBER_VARIABLES,2)
REAL, INTENT(OUT) :: MODELVALUE(NUMBER_BIN,NUMBER_VARIABLES)

INTERFACE
FUNCTION BINVAL(VARID,BINID,NUMBER_VARIABLES,NUMBER_BIN,VARIABLE_RANGE)

IMPLICIT NONE
INTEGER,INTENT(IN) :: VARID,BINID,NUMBER_VARIABLES,NUMBER_BIN
REAL :: BINVAL,MAXIMUMVAR,MINIMUMVAR,SLOPE,B,Y1,Y2
REAL, INTENT(IN) :: VARIABLE_RANGE(NUMBER_VARIABLES,2)

END FUNCTION BINVAL
END INTERFACE

VAR_LOOP2: DO I=1,NUMBER_VARIABLES,1
BIN_LOOP1: DO II=1,NUMBER_BIN,1

MODELVALUE(II,I) = BINVAL(I,II,NUMBER_VARIABLES,NUMBER_BIN,VARIABLE_RANGE)
END DO BIN_LOOP1

END DO VAR_LOOP2

END SUBROUTINE MODEL_VALUE

43

Appendix B.4: SUBROUTINE OPTIMUM_MODEL
!OPTIMUM_MODEL--
! THIS SUBROUTINE OPEN UP THE PPD FILE AND CALCULATES A POPLUATION OF FEASIBLE
! VARIABLE VALUES BASED ON THE PROBABILITY DISTRIBUTION OF THE PPD.
!
! VARIABLES:
! I, II DO LOOP COUNTERS
! STATUS I/O STATUS INDICATOR
! SEED RANDOM NUMBER GENORATOR SEED
! N RANDOMLY SELECTED BIN
! GENERATIONS NUMBER OF GENERATIONS
! NUMBER_VARIABLES NUMBER OF VARIABLES
! NUMBER_BIN NUMBER OF BINS IN PPD
! POPULATION_SIZE SIZE OF POPULATION
! MODELVALUE MODEL VALUE PER BIN
! PPD POSTERIOR PROBABILITY DENSITY
! SELECTED BOOLIAN VARIABLE FOR SELECTION
!
! INPUT:
! GENERATIONS
! NUMBER_VARIABLES
! NUMBER_BIN
! POPULATION_SIZE
! MODELVALUE
! FILE='PPD'
!
! OUTPUT:
! FILE='OPTIMUM_MODEL'
!
! SUBROUTINES:
! RANDOM_INITIALIZER
!
! FUNCTIONS:
! URAND
!---

SUBROUTINE OPTIMUM_MODEL(GENERATIONS,NUMBER_VARIABLES,NUMBER_BIN,POPULATION_SIZE,MODELVALUE)

IMPLICIT NONE

INTEGER :: I, II, STATUS, SEED, N
INTEGER, INTENT(IN) :: GENERATIONS,NUMBER_VARIABLES,NUMBER_BIN,POPULATION_SIZE

REAL, INTENT(IN) :: MODELVALUE(NUMBER_BIN,NUMBER_VARIABLES)
REAL, ALLOCATABLE :: PPD(:,:),OP_MOD(:,:)

LOGICAL :: SELECTED

INTERFACE
FUNCTION URAND(SEED)

IMPLICIT NONE
INTEGER :: SEED
REAL :: URAND
REAL, PARAMETER :: NORMALIZER=1.5258E-5

END FUNCTION URAND

SUBROUTINE RANDOM_INITIALIZER(SEED)
IMPLICIT NONE
INTEGER, INTENT(OUT) :: SEED
INTEGER :: I

END SUBROUTINE RANDOM_INITIALIZER
END INTERFACE

ALLOCATE(PPD(NUMBER_VARIABLES,NUMBER_BIN),STAT=STATUS)
IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR PPD"

44

ALLOCATE(OP_MOD(POPULATION_SIZE,NUMBER_VARIABLES),STAT=STATUS)
IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR OP_MOD"

! INITIALIZE RANDOM NUMBER GENERATOR
CALL RANDOM_INITIALIZER(SEED)

! OPEN THE PPD FILE AND READ IN THE PPD FOR THE FINAL GENERATION
OPEN (UNIT=10,FILE='PPD',STATUS='OLD',ACTION='READ',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: PPD"

!POSITION CURSOR AT LAST GENERATION IN PPD FILE
GEN_LOOP1: DO I = 0,GENERATIONS-1,1

VAR_LOOP1: DO II = 1,NUMBER_VARIABLES,1
READ(UNIT=10,FMT=*,ERR=40,IOSTAT=STATUS)

END DO VAR_LOOP1
END DO GEN_LOOP1

VAR_LOOP2: DO I = 1,NUMBER_VARIABLES,1
READ(UNIT=10,FMT=*,ERR=40,IOSTAT=STATUS) (PPD(I,II),II=1,NUMBER_BIN,1)

END DO VAR_LOOP2

CLOSE(UNIT=10)

! NORMALIZE PPD
VAR_LOOP4: DO I = 1,NUMBER_VARIABLES,1

PPD(I,1:NUMBER_BIN:1) = PPD(I,1:NUMBER_BIN:1)/(SUM(PPD(I,1:NUMBER_BIN:1)))
END DO VAR_LOOP4

! PROCEED TO SELECT MODEL VARIABLES BASED ON THE FINAL PPD
POP_LOOP1: DO I = 1,POPULATION_SIZE,1

VAR_LOOP3: DO II = 1,NUMBER_VARIABLES,1
SELECTED = .FALSE.
DO

N = ANINT(URAND(SEED)*REAL(NUMBER_BIN))
IF (N==0) N = 1
IF (N==(NUMBER_BIN+1)) N = NUMBER_BIN
IF (N>NUMBER_BIN) PRINT*,'ERROR IN OPTIMUM MODEL'

IF (URAND(SEED)<=PPD(II,N)) SELECTED = .TRUE.
IF (SELECTED) EXIT

END DO
OP_MOD(I,II) = MODELVALUE(N,II)

END DO VAR_LOOP3
END DO POP_LOOP1

! WRITE OUTPUT OF PPD
OPEN (UNIT=10,FILE='OPTIMUM_MODEL',STATUS='REPLACE',ACTION='WRITE',POSITION='REWIND',IOSTAT=STATUS)

IF (STATUS>0) STOP "CAN NOT OPEN FILE: OPTIMUM_MODEL"
POP_LOOP2: DO I = 1,POPULATION_SIZE,1

WRITE(UNIT=10,FMT=*,ERR=40,IOSTAT=STATUS) (OP_MOD(I,II),II = 1,NUMBER_VARIABLES,1)
END DO POP_LOOP2
CLOSE(UNIT=10)

40 IF (STATUS > 0) PRINT*,'INPUT DATA ERROR'

DEALLOCATE(OP_MOD,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR OP_MOD"

DEALLOCATE(PPD,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR PPD"

END SUBROUTINE OPTIMUM_MODEL

Appendix B.5: SUBROUTINE NORMAL
!NORMAL--
! THIS SUBROUTINE DETERMINES THE FUZZY FITNESS OF EACH MEMBER OF A GENERATION

45

! AND PLACES THE FITNESS IN A AN ARRAY PM THAT IS POPULATION_SIZE LONG.
!
! VARIABLES:
! I,II DO LOOP COUNTERS
! STATUS ALLOCATION AND/OR IO STATUS NUMBER
! POPULATION_SIZE POPULATIONS SIZE
! NUMBER_OBJECTIVES NUMBER OF OBJECTIVES
! EXPERIMENTAL_DATA EXPERIMENTAL DATA ARRAY
! EXPERIMENTAL_ERROR EXPERIMENTAL ERROR ARRAY
! CALC_DATA UNSCALED CALCUALTED VALUES
! PM BAYES SCALED FITNESS VECTOR
! TOP_SCALE FUZZY FITNESS UPPER SCALE LIMIT (CONSTANT)
! BOTTOM_SCALE FUZZY FITNESS LOWER SCALE LIMIT (CONSTANT)
! RMAX(:) LARGEST UNSCALED OBJ VALUE VECTOR
! RMIN(:) SMALLEST UNSCALED OBJ VALUE VECTOR
! TEMP1 LARGEST TEMP UNSCALED OBJ VALUE
! TEMP2 SMALLEST TEMP UNSCALED OBJ VALUE
! X1,Y1 FUZZY POINT 1
! X2,Y2 FUZZY POINT 2
! X3,Y3 FUZZY POINT 3
! X4,Y4 FUZZY POINT 4
! X5,Y5 FUZZY POINT 5
! X CALC_DATA VALUE FOR WHICH A FUZZY FITNESS IS NEEDED
! AVERAGE AVERAGE FUZZY FITNESS FOR A POPULATION MEMBER
! SLOPE SCALING SLOPE FOR BAYES SCALE
! B Y INTERCEPT FOR BAYES SCALING
! MAXIMUM MAXIMUM VALUE USED IN PPD SCALING
! MINIMUM MINIMUM VALUE USED IN PPD SCALING
! DIFFERENCE DIFFERENCE BETWEEN MAXIMUM AND MINIMUM
! INPUT:
!

POPULATION_SIZE,NUMBER_OBJECTIVES,EXPERIMENTAL_DATA,EXPERIMENTAL_ERROR,CALC_DATA,SUMT
OTAL
! OUTPUT:
! PM
! SUBROUTINES:
! NONE
! FUNCTIONS:
! AVG
!---

SUBROUTINE NORMAL(POPULATION_SIZE,NUMBER_OBJECTIVES,EXPERIMENTAL_DATA,&
EXPERIMENTAL_ERROR,CALC_DATA,PM)

IMPLICIT NONE

INTEGER :: I,II,STATUS
INTEGER, INTENT(IN) :: POPULATION_SIZE
INTEGER, INTENT(IN) :: NUMBER_OBJECTIVES

REAL, INTENT(IN) :: EXPERIMENTAL_DATA(NUMBER_OBJECTIVES),EXPERIMENTAL_ERROR(NUMBER_OBJECTIVES)
REAL, INTENT(IN) :: CALC_DATA(POPULATION_SIZE,NUMBER_OBJECTIVES)
REAL, INTENT(OUT) :: PM(POPULATION_SIZE)
REAL, PARAMETER :: TOP_SCALE = 1.0, BOTTOM_SCALE=0.0
REAL, ALLOCATABLE :: RMAX(:),RMIN(:)
REAL :: X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X,AVERAGE,SLOPE,B,MAXIMUM,MINIMUM,DIFFERENCE,TEMP1,TEMP2

INTERFACE
FUNCTION AVG(X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X)

REAL :: AVG
REAL, INTENT(IN) :: X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X

END FUNCTION AVG
END INTERFACE

ALLOCATE(RMAX(NUMBER_OBJECTIVES),STAT=STATUS)
IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR RMAX"

46

ALLOCATE(RMIN(NUMBER_OBJECTIVES),STAT=STATUS)
IF (STATUS /= 0) STOP "NOT ENOUGH MEMORY FOR RMIN"

!ARRAY INITIALIZATION
PM = 0.0

! DETERMINING THE MOST UNFIT MEMBERS OF THE POPULATION FOR THE UPPER AND LOWER
! BOUNDS OF THE FUZZY LOGIC RULE SET
RMAX = EXPERIMENTAL_DATA+EXPERIMENTAL_ERROR
RMIN = EXPERIMENTAL_DATA-EXPERIMENTAL_ERROR
OBJ_LOOP2: DO I = 1,NUMBER_OBJECTIVES,1

TEMP1 = MAXVAL(CALC_DATA(1:POPULATION_SIZE:1,I:I:1))
TEMP2 = MINVAL(CALC_DATA(1:POPULATION_SIZE:1,I:I:1))
IF (TEMP1>RMAX(I)) RMAX(I)=TEMP1
IF (TEMP2<RMIN(I)) RMIN(I)=TEMP2

END DO OBJ_LOOP2

! DETERMINE THE FITNESS OF EACH MEMBER OF THE POPULATION USING THE FUZZY LOGIC
! RULE SET. THE TOTAL FITNESS IS THE AVERAGE OF ALL THE FITNESS OF EACH OBJECTIVE
! FOR EACH MEMBER OF THE POPULATION.
POP_LOOP1: DO I = 1,POPULATION_SIZE,1

AVERAGE = 0.0
OBJ_LOOP3: DO II = 1,NUMBER_OBJECTIVES,1

X1 = RMIN(II)
Y1 = BOTTOM_SCALE
X2 = EXPERIMENTAL_DATA(II)-EXPERIMENTAL_ERROR(II)
Y2 = TOP_SCALE

 X3 = EXPERIMENTAL_DATA(II)
 Y3 = TOP_SCALE

X4 = EXPERIMENTAL_DATA(II)+EXPERIMENTAL_ERROR(II)
Y4 = TOP_SCALE
X5 = RMAX(II)
Y5 = BOTTOM_SCALE
X = CALC_DATA(I,II)
AVERAGE = AVERAGE+AVG(X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X)

END DO OBJ_LOOP3
PM(I) = AVERAGE/REAL(NUMBER_OBJECTIVES)

END DO POP_LOOP1

DEALLOCATE(RMAX,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR RMAX"

DEALLOCATE(RMIN,STAT=STATUS)
IF (STATUS /= 0) STOP "DEALLOCATE ERROR FOR RMIN"

END SUBROUTINE NORMAL

Appendix B.6: FUNCTION AVG
!AVG--
!This function is the heart of the fuzzy logic selection method.
!The points listed BELOW define the five major points in a
!fuzzy logic rule set:
! 1\ /5
! \ /
! \ /
! 2__3__4
! AVG determines between which two points the value of X lies
! and then calls POINT to determine the cooresponding value of Y
!
! VARIABLES:
! AVG VALUE OF Y SENT BACK CORRESPONDING TO X
! X1,Y1 POINT 1
! X2,Y2 POINT 2
! X3,Y3 POINT 3
! X4,Y4 POINT 4

47

! X5,Y5 POINT 5
! X CALCULATED VALUE WHOSE FITNESS NEEDS TO BE DETERMINED
! INPUT:
! X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X
! OUTPUT:
! AVG
! SUBROUTINES:
! NONE
! FUNCTIONS:
! POINT
!---
FUNCTION AVG(X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X)

IMPLICIT NONE

REAL :: AVG
REAL, INTENT(IN) :: X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X

INTERFACE
FUNCTION POINT(X1,Y1,X2,Y2,X)

REAL :: POINT,SLOPE,B
REAL, INTENT(IN) :: X1,Y1,X2,Y2,X

END FUNCTION POINT
END INTERFACE

IF (X1>X2.OR.X2>X3.OR.X3>X4.OR.X4>X5) THEN !TESTING TO MAKE SURE THE FIVE POINTS ARE IN THE
PROPER ORDER

PRINT*,'ERROR #1 IN AVG, POINTS OUT OF ORDER'
READ(*,*)
STOP

END IF

IF ((X>=X1).AND.(X<=X2)) THEN
AVG = POINT(X1,Y1,X2,Y2,X)

ELSE IF ((X>=X2).AND.(X<=X3)) THEN
AVG = POINT(X2,Y2,X3,Y3,X)

ELSE IF ((X>=X3).AND.(X<=X4)) THEN
AVG = POINT(X3,Y3,X4,Y4,X)

ELSE IF ((X>=X4).AND.(X<=X5)) THEN
AVG = POINT(X4,Y4,X5,Y5,X)

ELSE
PRINT*,'ERROR #2 IN AVG, X OUT OF RANGE'
READ(*,*)
STOP

ENDIF

END FUNCTION AVG

Appendix B.7: FUNCTION BINVAL
!BINVAL--
! GIVEN A BIN NUMBER, THIS FUNCTION RETURNS THE AVERAGE VALUE
! OF THE BIN IN TERMS OF ITS REAL VARIABLE VALUE BETWEEN THE
! RANGES SPECIFIED IN VARIABLE_RANGES.
! VARIABLES:
! VARID ID OF VARIABLE TYPE
! BINID ID OF BIN POSITION
! NUMBER_VARIABLES NUMBER OF VARIABLES
! NUMBER_BIN NUMBER OF BINS
! BINVAL REAL VALUE OF CENTER OF BIN
! MAXIMUMVAR MAXIMUM VALUE IN VARIABLE RANGE
! MINIMUMVAR MINIMUM VALUE IN VARIABLE RANGE
! SLOPE SLOPE OF LINE INTERCEPT CONVERSION
! B Y INTERCEPT OF LINE CONVERSION
! Y1 UPPER VALUE OF BIN

48

! Y2 LOWER VALUE OF BIN
! VARIABLE_RANGE ARRAY CONTAINING VARIABLE RANGES.
! INPUT:
! VARID,BINID,NUMBER_VARIABLES,NUMBER_BIN,VARIABLE_RANGE
! OUTPUT:
! BINVAL
! SUBROUTINES:
! NONE
! FUNCTIONS:
! NONE
!---
FUNCTION BINVAL(VARID,BINID,NUMBER_VARIABLES,NUMBER_BIN,VARIABLE_RANGE)

IMPLICIT NONE

INTEGER,INTENT(IN) :: VARID,BINID,NUMBER_VARIABLES,NUMBER_BIN

REAL :: BINVAL,MAXIMUMVAR,MINIMUMVAR,SLOPE,B,Y1,Y2
REAL, INTENT(IN) :: VARIABLE_RANGE(NUMBER_VARIABLES,2)

MAXIMUMVAR = VARIABLE_RANGE(VARID,2)
MINIMUMVAR = VARIABLE_RANGE(VARID,1)

SLOPE = (MAXIMUMVAR-MINIMUMVAR)/(REAL(NUMBER_BIN))
B = MINIMUMVAR

Y1 = SLOPE*REAL(BINID) + B
Y2 = SLOPE*REAL(BINID-1) + B

BINVAL = (Y1+Y2)/2.0

END FUNCTION BINVAL

Appendix B.8: SUBROUTINE RANDOM_INITIALIZER
!RANDOM_INITIALIZER--
! THIS SUBROUTINE RETURNS A SEED GENERATED BY ACCESSING THE SYSTEM CLOCK AND THEN
! CALLS THE RANDOM_SEED() BUILT-IN SUBROUTINE A NUMBER OF TIMES THAT IS A FUNCTION OF THE
! SEED VALUE TO ENSURE THAT THE RANDOM NUMBER GENERATOR (URAND) REMAINS RANDOM.
! THIS SUSROUTINE SHOULD ONLY BE CALLED ONCE IN THE RUNNING OF A PROGRAM.
!
! VARIABLES:
! I DO LOOP COUNTER
! SEED RANDOM NUMBER SEED
! INPUT:
! SEED
! OUTPUT:
! SEED
! SUBROUTINES:
! NONE
! FUNCTIONS:
! NONE
!---

SUBROUTINE RANDOM_INITIALIZER(SEED)

IMPLICIT NONE

INTEGER, INTENT(OUT) :: SEED
INTEGER :: I

CALL SYSTEM_CLOCK(SEED)
SEED = INT(REAL(SEED)/1.0E6)
SEED_LOOP: DO I = 1,SEED,1

CALL RANDOM_SEED()

49

END DO SEED_LOOP

END SUBROUTINE RANDOM_INITIALIZER

Appendix B.9: FUNCTION URAND
!URAND--
! THIS FUNCTION RETURNS A RANDOMLY GENERATED NUMBER BETWEEN 0 AND 1
! AS THE VARIABLE URAND
!
! THE CALLING PROGRAM SHOULD CONTAIN THE FOLLOWING LINES IN ORDER TO
! PROPERLY INITIALIZE THE RANDOM NUMBER GENERATOR. SEED IS AN INTEGER:
!
! CALL SYSTEM_CLOCK(SEED)
! SEED = INT(REAL(SEED)/1.0E6)
! SEED_LOOP: DO I = 1,SEED,1
! CALL RANDOM_SEED()
! END DO SEED_LOOP
!
! NOTE: IF A REAL NUMBER BETWEEN 0 AND 1 IS NOT RETURNED, SEE NOTES IN CODE BELOW
!
! VARIABLES:
! URAND REAL NUMBER BETWEEN 0 AND 1
! SEED RANDOM NUMBER SEED
! NORMALIZER VARIABLE TO ENSURE THAT URAND FALLS BETWEEN 0 AND 1
! THIS MAY BE SYSTEM DEPENDENT
! INPUT:
! BE SURE TO CALL RANDOM_SEED FIRST
! OUTPUT:
! URAND RANDOM NUMBER
! SUBROUTINES:
! NONE
! FUNCTIONS:
! NONE
!---

FUNCTION URAND(SEED)

IMPLICIT NONE

INTEGER :: SEED

REAL :: URAND
REAL, PARAMETER :: NORMALIZER=1.5258E-5

CALL RANDOM_NUMBER(URAND)

! WHEN RUNNING THIS CODE ON MY POWER MACINTOSH G3, THE INSTRINSIC FUNCTION
! RANDOM_NUMBER WAS PROVIDING RANDOM NUMBERS BETWEEN 0 AND 1.5258E-5
! IF YOU RUN THIS CODE ON YOUR COMPUTER AND THE URAND IS NOT RANDOM THEN PERHAPS
! THE DEFAULT RANDOM RANGE ON YOUR COMPUTER IS DIFFERENT AND YOUR NORMALIZER NEEDS
! TO BE ADJUSTED

URAND = URAND/NORMALIZER

! THIS SAFETY STEP IS PROVIDED SO THAT IN THE EVENT THAT THE NORMALIZER IS NOT
! CORRECT, THE WORST THAT CAN HAPPEN IS THAT URAND IS NOT RANDOM.

IF (URAND>1.0) URAND = 1.0
IF (URAND<0.0) URAND = 0.0

END FUNCTION URAND

50

Appendix B.10: FUNCTION POINT
!POINT--
!GIVEN TWO POINTS (X1,Y1) AND (X2,Y2) AND GIVEN A VALUE OF X
!BETWEEN X1 AND X2 INCLUSIVE, THE REAL FUNCTION POINT SENDS BACK
!THE CORRESPONDING VALUE OF Y.
!
! VARIABLES:
! X1,Y1 POINT 1
! X2,Y2 POINT 2
! X X VALUE FOR WHICH Y WILL BE FOUND
! POINT VALUE OF Y FOR X
! SLOPE SLOPE BETWEEN POINTS (X1,Y1) AND (X2,Y2)
! B Y INTERCEPT OF LINE WITH SLOPE AND INTERSECTING (X1,Y1)
! INPUT:
! X1,Y1,X2,Y2,X
! OUTPUT:
! POINT
! SUBROUTINES:
! NONE
! FUNCTIONS:
! NONE
!---
FUNCTION POINT(X1,Y1,X2,Y2,X)

IMPLICIT NONE

REAL :: POINT,SLOPE,B
REAL, INTENT(IN) :: X1,Y1,X2,Y2,X

IF (X1==X2) THEN ! TO AVOID A DIVISION BY ZERO
POINT = Y1

ELSE
SLOPE = (Y2-Y1)/(X2-X1)
B = Y1-SLOPE*X1
POINT = SLOPE*X+B

ENDIF

END FUNCTION POINT

Appendix B.11: FUNCTION BINNER
!BINNER--
!THE PURPOSE OF THE INTEGER FUNCTION BINNER IS TO TAKE A REAL VALUE AND
!DETERMINE ITS BIN NUMBER WITHIN A SET RANGE OF VALUES.
!
! VARIABLES:
! BINNER BIN NUMBER FOR THE VARIABLE
! VARID THE VARIABLE ID NUMBER TO BE BINNED
! NUMBER_BIN NUMBER OF BINS
! NUMBER_VARIABLES NUMBER OF VARIABLES
! VAR VARIABLE VALUE TO BE BINNED
! VARIABLE_RANGE UPPER AND LOWER BOUNDS OF BINNING
! RANGE SIZE OF BINNING RANGE
! SLOPE # BINS / RANGE
! B Y INTERCEPT OF LINE FOR BINS AND RANGE
! INPUT:
! VARID,VAR,NUMBER_BIN,NUMBER_VARIABLES,VARIABLE_RANGE
! OUTPUT:
! BINNER
! SUBROUTINES:
! NONE
! FUNCTIONS:
! NONE
!---

51

FUNCTION BINNER(VARID,VAR,NUMBER_BIN,NUMBER_VARIABLES,VARIABLE_RANGE)

IMPLICIT NONE

INTEGER :: BINNER
INTEGER, INTENT(IN) :: VARID,NUMBER_BIN,NUMBER_VARIABLES
REAL, INTENT(IN) :: VAR,VARIABLE_RANGE(NUMBER_VARIABLES,2)
REAL :: RANGE,SLOPE,B

! EQUATION OF A LINE WHERE THE MINIMUM VARIABLE VALUE AND THE
! BIN # 0 ARE ONE POINT AND THE MAXIMUM VARIABLE VALUE AND THE
! TOTAL NUMBER OF BINS ARE THE OTHER POINT

RANGE = VARIABLE_RANGE(VARID,2)-VARIABLE_RANGE(VARID,1)

!SLOPE = NUMBER_BIN - 0 / MAXVAR - MINVAR
SLOPE = REAL(NUMBER_BIN)/RANGE

! Y INTERCEPT
B = -SLOPE*VARIABLE_RANGE(VARID,1)

BINNER = INT(SLOPE*VAR+B)+1

! ERROR CORRECTION IN CASE OF A MISTAKE
IF (BINNER==(NUMBER_BIN+1)) BINNER=NUMBER_BIN

IF (BINNER>NUMBER_BIN.OR.BINNER<1) THEN
PRINT*,'ERROR IN BINNER',BINNER
READ(*,*)
STOP

END IF

END FUNCTION BINNER

	Abstract
	1.0 Introduction
	1.1 Inverse and Ill Posed Problems in Materials Science and Engineering
	1.2 Bayesian Statistics in Model Inversion
	1.3 Genetic Algorithms in Model Inversion and Parameter optimization

	2.0 Schaffer’s F2 Problem
	3.0 Conclusions
	4.0 Acknowledgments
	5.0 References
	6.0 Tables
	7.0 Figures
	Appendix A: The modified Genetic Algorithm Selection code
	Appendix A.1: FORTRAN 77 Subroutine FITNESSPROB
	Appendix A.2: FORTRAN 77 Function AVG
	Appendix A.3: FORTRAN 77 Function POINT
	Appendix A.4: FORTRAN 77 Subroutine REPLI
	Appendix A.4: FORTRAN 77 Subroutine PROBSELECT

	Appendix B: The Bayesian Inference Engine (BIE)
	Appendix B.1: Program Bayes
	Appendix B.2: SUBROUTINE PPD_GENERATOR
	Appendix B.3: SUBROUTINE MODEL_VALUE
	Appendix B.4: SUBROUTINE OPTIMUM_MODEL
	Appendix B.5: SUBROUTINE NORMAL
	Appendix B.6: FUNCTION AVG
	Appendix B.7: FUNCTION BINVAL
	Appendix B.8: SUBROUTINE RANDOM_INITIALIZER
	Appendix B.9: FUNCTION URAND
	Appendix B.10: FUNCTION POINT
!POINT---
	Appendix B.11: FUNCTION BINNER

